Date of Award
1-1-2018
Document Type
Dissertation
Degree Name
Ph.D.
Organizational Unit
Daniel Felix Ritchie School of Engineering and Computer Science, Electrical and Computer Engineering
First Advisor
Margareta Stefanovic, Ph.D.
Second Advisor
Kimon Valavanis
Third Advisor
Jun Zhang
Fourth Advisor
Alvaro Arias
Keywords
Cooperative control, Distributed control, Graph-theoretic control, Large-scale systems, Multi-agent systems, Robust control
Abstract
Many large-scale systems can be modeled as groups of individual dynamics, e.g., multi-vehicle systems, as well as interconnected multiagent systems, power systems and biological networks as a few examples. Due to the high-dimension and complexity in configuration of these infrastructures, only a few internal variables of each agent might be measurable and the exact knowledge of the model might be unavailable for the control design purpose. The collective objectives may range from consensus to decoupling, stabilization, reference tracking, and global performance guarantees. Depending on the objectives, the designer may choose agent-level low-dimension or multiagent system-level high-dimension approaches to develop distributed algorithms. With an inappropriately designed algorithm, the effect of modeling uncertainty may propagate over the communication and coupling topologies and degrade the overall performance of the system. We address this problem by proposing single- and multi-layer structures. The former is used for both individual and interconnected multiagent systems. The latter, inspired by cyber-physical systems, is devoted to the interconnected multiagent systems. We focus on developing a single control-theoretic tool to be used for the relative information-based distributed control design purpose for any combinations of the aforementioned configuration, objective, and approach. This systematic framework guarantees robust stability and performance of the closed-loop multiagent systems. We validate these theoretical results through various simulation studies.
Publication Statement
Copyright is held by the author. User is responsible for all copyright compliance.
Rights Holder
Vahid Rezaei
Provenance
Received from ProQuest
File Format
application/pdf
Language
en
File Size
354 p.
Recommended Citation
Rezaei, Vahid, "Robust Distributed Stabilization of Interconnected Multiagent Systems" (2018). Electronic Theses and Dissertations. 1443.
https://digitalcommons.du.edu/etd/1443
Copyright date
2018
Discipline
Electrical engineering