Date of Award
2021
Document Type
Dissertation
Degree Name
Ph.D.
Organizational Unit
College of Natural Science and Mathematics, Chemistry and Biochemistry
First Advisor
Andrei G. Kutateladze
Second Advisor
Brian Michel
Third Advisor
Michelle Knowles
Fourth Advisor
Daniel Linseman
Fifth Advisor
Brady Worrell
Keywords
Azaxylylenes, Organic chemistry, Photochemistry
Abstract
Natural products remain the most common source for drug leads, although diversity-oriented synthesis of unnatural complex molecules is gaining momentum. Our lab has been developing experimentally simple and straightforward approaches to complex molecular architectures via photochemical reactions involving a minimal number of experimental steps. In order to achieve this, photoprecursors were assembled via high yielding reactions. Next, we deployed photoinduced cycloadditions to create complex 3-dimentional structures. Lastly, with this obtained primary photoproduct, post-photochemical transformations were used to further grow its scaffold complexity.
One method to increase scaffold complexity is the [4+2] intramolecular cycloadditions of azaxylylenes, which are developed through standard amide bond-forming reactions. The intermediates are produced by the excited state intramolecular proton transfer (ESIPT) from photoprecursors that could be trapped intramolecularly by tethered unsaturated pendants. Understanding intramolecular cycloaddition of azaxylylenes allows for the access to other derivatives of these complex molecules, with a particular focus on heterocycles. Also, the awareness of photoassisted intermediates via excited state intramolecular proton transfer helped us implement [4+2] cycloadditions, which gave us rapid access to complex nitrogen heterocycles possessing natural product-like privileged substructures. The primary photoproducts were introduced to post-photochemical transformations, including classical elimination of the scaffold and decarboxylative elimination. Through this base-catalyzed modification, we were able to access flat, aromatic, and complex heterocycles.
With underutilization of photochemistry and the need of aromatic polyheterocycles, we tailored photoprecursors to target specific compounds that have never been synthesized before but are targeted for biological testing. In addition to unnatural polyheterocycles, we targeted natural products that are biologically active. We continued our studies to modulate the biological activity of final compounds through methylation of the pyridine; all these products were submitted to National Cancer Institute for NCI-60 testing against 60 most common human cancer cell lines. During our studies, we derived an unusual rearrangement that undergoes a retro-Claisen condensation producing pyridopyrimidine.
Our focus in the synthesis of photoassisted intramolecular cycloadditions will help develop complex compounds in drug discovery. Method development for synthesis of these highly sought-after sp3 carbon rich photoprecursors has the potential to lead to the discovery of new materials. Photochemistry is slowly earning its deserved place in the arsenal of synthetic methods, and our successful synthetic photochemistry research program will further encourage the utilization of these methods in medicinal chemistry and make a greater impact in the academic and industrial community.
Publication Statement
Copyright is held by the author. User is responsible for all copyright compliance.
Rights Holder
Tina Alanna Holt
Provenance
Received from ProQuest
File Format
application/pdf
Language
en
File Size
195 pgs
Recommended Citation
Holt, Tina Alanna, "Photoassisted Synthesis of Complex Polyheterocycles via Rational Design of Tailored Photoprecursors" (2021). Electronic Theses and Dissertations. 1941.
https://digitalcommons.du.edu/etd/1941
Copyright date
2021
Discipline
Chemistry