Date of Award
3-2023
Document Type
Masters Thesis
Degree Name
M.S.
Organizational Unit
Daniel Felix Ritchie School of Engineering and Computer Science, Computer Science
First Advisor
Sanchari Das
Second Advisor
Maria Calbi
Third Advisor
Daniel Pittman
Fourth Advisor
Kerstin Haring
Keywords
Bias mitigation methods, Gender bias, Literature review, Machine learning, Music recommender system (MRS), User study
Abstract
The majority of smartphone users engage with a recommender system on a daily basis. Many rely on these recommendations to make their next purchase, download the next game, listen to the new music or find the next healthcare provider. Although there are plenty of evidence backed research that demonstrates presence of gender bias in Machine Learning (ML) models like recommender systems, the issue is viewed as a frivolous cause that doesn’t merit much action. However, gender bias poses to effect more than half of the population as by default ML systems are designed to cater to a cisgender man. This thesis takes a closer look into gender bias discovered in different ML/AI applications and provides a holistic view of bias mitigation measures proposed in literature. Then by means of user study on 20 participants this paper analyzes gender bias in music recommender systems and the efficiency of bias mitigation methods. Instead of detailing the bias mitigation methods in technical terms, this paper takes the approach of utilizing user reviews to understand the effectiveness of bias mitigation methods for gender biases. Finally, this work aims to propose solutions that can help create equitable ML/AI systems that profits all stakeholders.
Publication Statement
Copyright is held by the author. User is responsible for all copyright compliance.
Rights Holder
Sunny Shrestha
Provenance
Received from ProQuest
File Format
application/pdf
Language
en
File Size
173 pgs
Recommended Citation
Shrestha, Sunny, "Design, Determination, and Evaluation of Gender-Based Bias Mitigation Techniques for Music Recommender Systems" (2023). Electronic Theses and Dissertations. 2182.
https://digitalcommons.du.edu/etd/2182
Copyright date
2023
Discipline
Computer science, Artificial intelligence, Music
Included in
Artificial Intelligence and Robotics Commons, Computer Engineering Commons, Other Music Commons