Date of Award
8-2023
Document Type
Masters Thesis
Degree Name
M.S.
Organizational Unit
Daniel Felix Ritchie School of Engineering and Computer Science, Mechanical and Materials Engineering
First Advisor
Peter J. Laz
Second Advisor
Kevin Shelburne
Third Advisor
Casey Myers
Fourth Advisor
Robert Dores
Keywords
Total shoulder arthroplasty (TSA), Anatomic total shoulder arthroplasty (aTSA), Reverse total shoulder arthroplasty (rTSA), Modeling, Joint mechanics, Outcomes
Abstract
Total Shoulder Arthroplasty (TSA) is a surgical procedure designed to improve joint functionality by replacing the articulation between the humeral head and the glenoid fossa. Anatomic Total Shoulder Arthroplasty (aTSA) and Reverse Total Shoulder Arthroplasty (rTSA) are two types of replacement surgery to relieve pain and restore function of the shoulder. The overall goal of this study was to evaluate the effects of variation of certain patient and implant alignment parameters that may influence long-term outcomes of these surgical procedures, including kinematics, joint loads and contact mechanics. Computational models of six TSA subjects, three aTSA and three rTSA, were created using subject-specific kinematics captured through high-speed stereo radiography (HSSR) during the abduction and forward flexion activities. Results showed the crucial role of patient-specific kinematics for obtaining accurate results, as a minor change in the kinematics considerably impacted the outputs of the models. Moreover, this study provided valuable insight regarding the impact of misalignment of the humeral stem and glenoid implants, highlighting the importance of carefully considering humeral version alignment, as higher version rotations can lead to a considerable decrease in the stability of the glenoid implant. This work emphasized the importance of patient specificity in computational modeling and has the potential to inform surgical planning to improve implanted joint mechanics and potentially patient outcomes.
Copyright Date
8-2023
Copyright Statement / License for Reuse
All Rights Reserved.
Publication Statement
Copyright is held by the author. User is responsible for all copyright compliance.
Rights Holder
Ignacio Rivero Crespo
Provenance
Received from ProQuest
File Format
application/pdf
Language
English (eng)
Extent
153 pgs
File Size
16.5 MB
Recommended Citation
Rivero Crespo, Ignacio, "Finite Element Modeling of Patient-Specific Total Shoulder Arthroplasty" (2023). Electronic Theses and Dissertations. 2306.
https://digitalcommons.du.edu/etd/2306
Discipline
Mechanical engineering, Biomechanics