Date of Award
11-2023
Document Type
Dissertation
Degree Name
Ph.D.
Organizational Unit
Daniel Felix Ritchie School of Engineering and Computer Science, Mechanical and Materials Engineering
First Advisor
Yun-Bo Yi
Second Advisor
Joe Hoffman
Third Advisor
Ali Azadani
Fourth Advisor
David Wenzhong Gao
Keywords
Mechanical properties, Metal-free friction material, Molecular dynamics, Thermal properties, Tribological properties
Abstract
Metallic friction materials currently used in industry may adversely impact the environment. Substitutions for metals in friction materials, on the other hand, can introduce operational safety issues and other unforeseeable issues such as thermal-mechanical instabilities and insufficient strength. In view of it, this dissertation focuses on developing different kinds of materials from simple structure to complex structure and evaluating the material properties with the assistance of molecular dynamics (MD) tools at the nano scale.
First, the concept of the contacted surfaces in friction at the atomic scale was introduced in order to get accurate understanding of the friction process compared to the macro scale. A MD model of 3C-SiC asperities was constructed for investigating the effect of the asperity-surface on the tribological properties. The surface contact with various number of scenarios were included to show the fundamental characterization of the interface in friction at the nano level. Generic simulation models for analyzing mechanical properties and thermal properties were developed as well to fully study the characteristics of 3C-SiC as a nonmetallic friction material. The predictions on the coefficient of friction (COF), wear rate, Young’s modulus, ultimate tensile strength (UTS), and thermal conductivity under different conditions were made based on the MD simulation.
Second, with the acknowledgement that 3C-SiC has been proven to be an ideal matrix material in friction, a new graphene (Gr) reinforced 3C-SiC nanocomposite model with lamellar structure was designed in MD simulation. The covalent bonding between Gr and 3C-SiC was applied to obtain better performance than the weak bonding. The interfacial energy between Gr and 3C-SiC was studied to examine the stability of the structure. Similarly, the tribological properties, mechanical properties, and thermal properties of the nanocomposite were considered to help understand the effect of Gr as a potential reinforcement for metal-free friction materials.
Finally, a new 3C-SiC spherical nanoparticle reinforced epoxy crosslinked nanocomposite with diglycidyl ether of bisphenol A (DGEBA) as the epoxy monomer and 3,3-diaminodiphenyl sulfone as the curing agent was constructed and studied considering the advantages epoxy have, such as relative low cost, remarkable environmental compatibility, and less powder generation or carbon deposition. Under different degrees of crosslinking, the glass transition temperature, fractional free volume, forces and COF during friction, Young’s modulus, and thermal conductivity of the nanocomposite as well as the pure epoxy with the same configurations were evaluated to provide a reference in designing real 3C-SiC/epoxy friction composite and similar materials with better performances.
Copyright Date
11-2023
Copyright Statement / License for Reuse
All Rights Reserved.
Publication Statement
Copyright is held by the author. User is responsible for all copyright compliance.
Rights Holder
Yizhan Zhang
Provenance
Received from ProQuest
File Format
application/pdf
Language
English (eng)
Extent
178 pgs
File Size
34.6 MB
Recommended Citation
Zhang, Yizhan, "Molecular Dynamics Study of Characterization in Metal-Free Friction Materials" (2023). Electronic Theses and Dissertations. 2358.
https://digitalcommons.du.edu/etd/2358
Discipline
Mechanical engineering, Materials science, Nanoscience
Included in
Nanotechnology Fabrication Commons, Other Materials Science and Engineering Commons, Other Mechanical Engineering Commons, Tribology Commons