Date of Award
6-1-2015
Document Type
Dissertation
Degree Name
Ph.D.
Organizational Unit
Daniel Felix Ritchie School of Engineering and Computer Science
First Advisor
Anneliese Andrews, Ph.D.
Second Advisor
Philip Beaver
Third Advisor
Matthew Rutherford
Fourth Advisor
Rinku Dewri
Fifth Advisor
Paul Rullkoetter
Keywords
Cluster analysis, Cost prediction, Help desk, Principal components analysis, Reliability
Abstract
IT help desk operations are expensive. Costs associated with IT operations present challenges to profit goals. Help desk managers need a way to plan staffing levels so that labor costs are minimized while problems are resolved efficiently. An incident prediction method is needed for planning staffing levels. The potential value of a solution to this problem is important to an IT service provider since software failures are inevitable and their timing is difficult to predict. In this research, a cost model for help desk operations is developed. The cost model relates predicted incidents to labor costs using real help desk data. Incidents are predicted using software reliability growth models. Cluster analysis is used to group products with similar help desk incident characteristics. Principal Components Analysis is used to determine one product per cluster for the prediction of incidents for all members of the cluster. Incident prediction accuracy is demonstrated using cluster representatives, and is done so successfully for all clusters with accuracy comparable to making predictions for each product in the portfolio. Linear regression is used with cost data for the resolution of incidents to relate incident predictions to help desk labor costs. Following a series of four pilot studies, the cost model is validated by successfully demonstrating cost prediction accuracy for one month prediction intervals over a 22 month period.
Publication Statement
Copyright is held by the author. User is responsible for all copyright compliance.
Rights Holder
Joseph D. Lucente
Provenance
Received from ProQuest
File Format
application/pdf
Language
en
File Size
184 p.
Recommended Citation
Lucente, Joseph D., "On the Viability of Quantitative Assessment Methods in Software Engineering and Software Services" (2015). Electronic Theses and Dissertations. 383.
https://digitalcommons.du.edu/etd/383
Copyright date
2015
Discipline
Engineering, Information science