Date of Award
1-1-2013
Document Type
Masters Thesis
Degree Name
M.S.
Organizational Unit
Daniel Felix Ritchie School of Engineering and Computer Science
First Advisor
Corinne S. Lengsfeld, Ph.D.
Second Advisor
Peter Laz
Third Advisor
Breigh Roszelle
Fourth Advisor
Alvaro Arias
Keywords
Cavitation, Computation fluid dynamics, CFD, Critical pressure, Fluid solid interaction, FSI, Pharmaceutical, Proteins
Abstract
Therapeutic proteins are used to successfully treat hemophilia, Crohn's Disease, diabetes, and cancer. Recent product recalls have occurred because of sub-visible particle formation resulting from the inherent instability of proteins. It has been suggested that particle formation is associated with late stage processing steps of filling, shipping, and delivery. Previous work at the University of Denver demonstrated that fluid cavitation can generate a large number of sub-visible protein particles in ultra clean formulations, but that mitigation can be achieved with fluid property manipulation. The goal of this research was to (1) assess the risk of cavitation under common pharmaceutical manufacturing conditions (i.e., pipe contraction and pumps), (2) establish a simple threshold criterion, and (3) suggest a series of mitigation techniques based on these thresholds. To accomplish these tasks, computational fluid dynamic simulations for a variety of pipe contraction and vial drop conditions were performed. The impact of geometry, fluid properties and operating conditions were varied to establish thresholds and mitigation strategies. The results of this research show that reducing the turbulence in a fluid system will cause the fluid to be less likely to cavitate. Additionally, threshold bounds were created that establish a definitive transition at which cavitation will occur.
Publication Statement
Copyright is held by the author. User is responsible for all copyright compliance.
Rights Holder
Donn Sederstrom
Provenance
Received from ProQuest
File Format
application/pdf
Language
en
File Size
94 p.
Recommended Citation
Sederstrom, Donn, "Cavitation in Pharmaceutical Manufacturing and Shipping" (2013). Electronic Theses and Dissertations. 586.
https://digitalcommons.du.edu/etd/586
Copyright date
2013
Discipline
Mechanical engineering, Pharmaceutical sciences