Date of Award
6-1-2014
Document Type
Dissertation
Degree Name
Ph.D.
Organizational Unit
College of Natual Science and Mathematics
First Advisor
Gareth R. Eaton, Ph.D.
Second Advisor
Andrei Kutateladze
Third Advisor
Michelle Knowles
Fourth Advisor
Keith Miller
Fifth Advisor
Scott Pegan
Sixth Advisor
Barry Zink
Keywords
Electron Paramagnetic Resonance Imaging (EPRI), Imaging, Nitroxides, Rapid scan, Relaxation, Resonators
Abstract
Optimization of nitroxides as probes for EPR imaging requires detailed understanding of spectral properties such as spin lattice relaxation times, spin packet linewidths, and nuclear hyperfine splitting. Initial measurements of relaxation times for six low molecular weight nitroxides at X-band stimulated further measurement at frequencies between 250 MHz and 34 GHz. The impact of tumbling was studied with perdeuterated 2,2,6,6-tetramethyl-4-piperidinyl-1-oxyl (PDT) in five solvents with viscosities resulting in tumbling correlation times, τR, between 4 and 50 ps. A set of three 14N/15N pairs of nitroxides in water was selected such that τR varied between 9 and 19 ps. To test the impact of structure on relaxation, three additional nitroxides with τR between 10 and 26 ps were studied.
In the fast tumbling regime 1/T2 ~ 1/T1 and relaxation is dominated by spin rotation, modulation of A-anisotropy and a thermally activated process. The contribution to 1/T1 from spin rotation is independent of frequency and decreases as τR increases. The modulation of nitrogen hyperfine anisotropy increases as frequency decreases and as τR increases, dominating at low frequencies for τR~ 15 ps. The modulation of g anisotropy is significant only at 34 GHz. Inclusion of a thermally activated process was required to account for the observation that for most of the radicals, 1/T1 was smaller at 250 MHz than at 1-2 GHz. The thermally activated process likely arises from intramolecular motions of the nitroxide ring that modulate the isotropic A values.
A phantom of three 4 mm tubes containing different 15N,2H-substituted nitroxides was constructed for use at 250 MHz. Projections for 2D spectral-spatial images were obtained by continuous wave (CW) and rapid scan (RS) EPR using a bimodal cross-loop resonator. Relative to CW projections obtained for the same data acquisition time (5 min), RS projections had significantly improved image quality. All experiments were facilitated by advancements in resonator design and testing, which are also described.
Publication Statement
Copyright is held by the author. User is responsible for all copyright compliance.
Rights Holder
Joshua R. Biller
Provenance
Received from ProQuest
File Format
application/pdf
Language
en
File Size
279 p.
Recommended Citation
Biller, Joshua R., "Nitroxide Radicals for Low Frequency Electron Paramagnetic Resonance Imaging (EPRI)" (2014). Electronic Theses and Dissertations. 71.
https://digitalcommons.du.edu/etd/71
Copyright date
2014
Discipline
Chemistry, Analytical chemistry, Physical chemistry