Date of Award
1-1-2011
Document Type
Masters Thesis
Degree Name
M.S.
Organizational Unit
Daniel Felix Ritchie School of Engineering and Computer Science, Computer Science
First Advisor
Richard M. Voyles, Ph.D.
Second Advisor
Sean E. Shaheen, Ph.D.
Third Advisor
Roger Salters
Fourth Advisor
Gao Wenzhong
Keywords
Districuted computing, Hardware neural network, Neuromorphic engineering, Organic bistable devices, Organic electronics, Synthetic neural network
Abstract
This thesis presents work done simulating a type of organic neuromorphic architecture, modeled after Artificial Neural Network, and termed Synthetic Neural Network, or SNN. The first major contribution of this thesis is development of a single-transistor-single-organic-bistable-device-per-input circuit that approximates behavior of an artificial neuron. The efficacy of this design is validated by comparing the behavior of a single synthetic neuron to that of an artificial neuron as well as two examples involving a network of synthetic neurons. The analysis utilizes electrical characteristics of polymer electronic elements, namely Organic Bistable Device and Organic Field Effect Transistor, created in the laboratory at University of Denver. Polymer electronics is a new branch of electronics that is based on conductive and semi-conductive polymers. These new elements hold a great advantage over the inorganic electronics in the form of physical flexibility and low cost of fabrication. However, their device variability between individual devices is also much greater. Therefore the second major contribution of this thesis is the analysis of resilience of neural networks subjected to physical damage and other manufacturing faults.
Publication Statement
Copyright is held by the author. User is responsible for all copyright compliance.
Rights Holder
Robert A. Nawrocki
Provenance
Received from ProQuest
File Format
application/pdf
Language
en
File Size
125 p.
Recommended Citation
Nawrocki, Robert A., "Simulation, Application, and Resilience of an Organic Neuromorphic Architecture, Made with Organic Bistable Devices and Organic Field Effect Transistors" (2011). Electronic Theses and Dissertations. 891.
https://digitalcommons.du.edu/etd/891
Copyright date
2011
Discipline
Computer Engineering, Engineering, Artificial Intelligence
Included in
Artificial Intelligence and Robotics Commons, Computer Engineering Commons, Electrical and Computer Engineering Commons