Publication Date
1-12-2022
Document Type
Article
Organizational Units
College of Natural Science and Mathematics, Geography and the Environment
Keywords
Volunteered geographic information (VGI), Geospatial big data, Point pattern analysis, Kernel density estimation, Hot-spot detection and visualization, Spatial bias, Multiple spatial scales, iNaturalist, Graphics processing unit (GPU), Parallel computing
Abstract
Volunteer-contributed geographic data (VGI) is an important source of geospatial big data that support research and applications. A major concern on VGI data quality is that the underlying observation processes are inherently biased. Detecting observation hot-spots thus helps better understand the bias. Enabled by the parallel kernel density estimation (KDE) computational tool that can run on multiple GPUs (graphics processing units), this study conducted point pattern analyses on tens of millions of iNaturalist observations to detect and visualize volunteers’ observation hot-spots across spatial scales. It was achieved by setting varying KDE bandwidths in accordance with the spatial scales at which hot-spots are to be detected. The succession of estimated density surfaces were then rendered at a sequence of map scales for visual detection of hot-spots. This study offers an effective geovisualization scheme for hierarchically detecting hot-spots in massive VGI datasets, which is useful for understanding the pattern-shaping drivers that operate at multiple spatial scales. This research exemplifies a computational tool that is supported by high-performance computing and capable of efficiently detecting and visualizing multi-scale hot-spots in geospatial big data and contributes to expanding the toolbox for geospatial big data analytics.
Copyright Statement / License for Reuse
This work is licensed under a Creative Commons Attribution 4.0 International License.
Publication Statement
This article was originally published as:
Zhang, G. (2022). Detecting and visualizing observation hot-spots in massive volunteer-contributed geographic data across spatial scales using GPU-accelerated kernel density estimation. ISPRS International Journal of Geo-Information, 11(1), 55. DOI: 10.3390/ijgi11010055
Rights Holder
Guiming Zhang
Provenance
Received from author
File Format
application/pdf
Language
English (eng)
Extent
15 pgs
File Size
6.4 MB
Publication Title
International Journal of Geo-Information
Volume
11
First Page
1
Last Page
15
ISSN
2220-9964
Recommended Citation
Zhang, Guiming, "Detecting and Visualizing Observation Hot-spots in Massive Volunteer-contributed Geographic Data across Spatial Scales Using GPU-accelerated Kernel Density Estimation" (2022). Geography and the Environment: Faculty Scholarship. 34.
https://digitalcommons.du.edu/geographyandenvironment_faculty/34
https://doi.org/10.3390/ijgi11010055
DOI Link
https://doi.org/10.3390/ijgi11010055