Comparison of Marker-based and Stereo Radiography Knee Kinematics in Activities of Daily Living
Publication Date
6-14-2018
Document Type
Article
Organizational Units
Daniel Felix Ritchie School of Engineering and Computer Science, Center for Orthopaedic Biomechanics, Mechanical and Materials Engineering
Keywords
Marker-based knee flexion, Kinematic, Radiography images
Abstract
Movement of the marker positions relative to the body segments obscures in vivo joint level motion. Alternatively, tracking bones from radiography images can provide precise motion of the bones at the knee but is impracticable for measurement of body segment motion. Consequently, researchers have combined marker-based knee flexion with kinematic splines to approximate the translations and rotations of the tibia relative to the femur. Yet, the accuracy of predicting six degree-of-freedom joint kinematics using kinematic splines has not been evaluated. The objectives of this study were to (1) compare knee kinematics measured with a marker-based motion capture system to kinematics acquired with high speed stereo radiography (HSSR) and describe the accuracy of marker-based motion to improve interpretation of results from these methods, and (2) use HSSR to define and evaluate a new set of knee joint kinematic splines based on the in vivo kinematics of a knee extension activity. Simultaneous measurements were recorded from eight healthy subjects using HSSR and marker-based motion capture. The marker positions were applied to three models of the lower extremity to calculate tibiofemoral kinematics and compared to kinematics acquired with HSSR. As demonstrated by normalized RMSE above 1.0, varus–valgus rotation (1.26), medial–lateral (1.26), anterior–posterior (2.03), and superior–inferior translations (4.39) were not accurately measured. Using kinematic splines improved predictions in varus–valgus (0.81) rotation, and medial–lateral (0.73), anterior–posterior (0.69), and superior–inferior (0.49) translations. Using splines to predict tibiofemoral kinematics as a function knee flexion can lead to improved accuracy over marker-based motion capture alone, however this technique was limited in reproducing subject-specific kinematics.
Publication Statement
Copyright held by author or publisher. User is responsible for all copyright compliance.
Recommended Citation
Hume, Donald R, et al. “Comparison of Marker-Based and Stereo Radiography Knee Kinematics in Activities of Daily Living.” Annals of Biomedical Engineering, vol. 46, no. 11, 2018, pp. 1806–1815. doi: 10.1007/s10439-018-2068-9.