Cosets, Characters and Fusion for Admissible-level osp(1|2) Minimal Models

Publication Date

11-3-2018

Document Type

Article

Organizational Units

Mathematics

Keywords

Minimal models, Grothendieck fusion, Highest-weight modules

Abstract

We study the minimal models associated to osp(1|2)" role="presentation" style="box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; line-height: normal; font-size: 16.2px; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">osp(1|2), otherwise known as the fractional-level Wess–Zumino–Witten models of osp(1|2)" role="presentation" style="box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; line-height: normal; font-size: 16.2px; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">osp(1|2). Since these minimal models are extensions of the tensor product of certain Virasoro and sl2" role="presentation" style="box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; line-height: normal; font-size: 16.2px; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">sl2 minimal models, we can induce the known structures of the representations of the latter models to get a rather complete understanding of the minimal models of osp(1|2)" role="presentation" style="box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; line-height: normal; font-size: 16.2px; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">osp(1|2). In particular, we classify the irreducible relaxed highest-weight modules, determine their characters and compute their Grothendieck fusion rules. We also discuss conjectures for their (genuine) fusion products and the projective covers of the irreducibles.

Publication Statement

Copyright held by author or publisher. User is responsible for all copyright compliance.

This document is currently not available here.

Share

COinS