Conjugacy in Inverse Semigroups
Publication Date
5-31-2019
Document Type
Article
Organizational Units
College of Natural Science and Mathematics, Mathematics
Keywords
Inverse semigroups, Conjugacy, Symmetric inverse semigroups, Free inverse semigroups, McAllister P-semigroups, Factorizable inverse monoids, Clifford semigroups, Bicyclic monoid, Stable inverse semigroups
Abstract
In a group G, elements a and b are conjugate if there exists g∈G" role="presentation" style="box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; line-height: normal; font-size: 16.2px; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">g∈G such that g−1ag=b" role="presentation" style="box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; line-height: normal; font-size: 16.2px; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">g−1ag=b. This conjugacy relation, which plays an important role in group theory, can be extended in a natural way to inverse semigroups: for elements a and b in an inverse semigroup S, a is conjugate to b, which we will write as a∼ib" role="presentation" style="box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; line-height: normal; font-size: 16.2px; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">a∼ib, if there exists g∈S1" role="presentation" style="box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; line-height: normal; font-size: 16.2px; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">g∈S1 such that g−1ag=b" role="presentation" style="box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; line-height: normal; font-size: 16.2px; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">g−1ag=b and gbg−1=a" role="presentation" style="box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; line-height: normal; font-size: 16.2px; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">gbg−1=a. The purpose of this paper is to study the conjugacy ∼i" role="presentation" style="box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; line-height: normal; font-size: 16.2px; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">∼i in several classes of inverse semigroups: symmetric inverse semigroups, McAllister P-semigroups, factorizable inverse monoids, Clifford semigroups, the bicyclic monoid, stable inverse semigroups, and free inverse semigroups.
Publication Statement
Copyright held by author or publisher. User is responsible for all copyright compliance.
Recommended Citation
Araújo, João, et al. “Conjugacy in Inverse Semigroups.” Journal of Algebra, vol. 533, 2019, pp. 142–173. doi: 10.1016/j.jalgebra.2019.05.022.