Causal Set Approach to Discrete Quantum Gravity

Authors

S. Gudder

Publication Date

2012

Document Type

Article

Keywords

Causal set approach, Discrete quantum gravity, Quantum sequential growth process

Abstract

We begin by describing a sequential growth model in which the universe grows one element at a time in discrete time steps. At each step, the process has the form of a causal set and the “completed” universe is given by a path consisting of a discretely growing chain of causal sets. We then introduce a quantum dynamics to obtain a quantum sequential growth process (QSGP) which may lead to a viable model for discrete quantum gravity. A discrete version of Einstein’s field equation is derived and a definition for discrete geodesics is proposed. A type of QSGP called an amplitude process is introduced. An example of an amplitude process called a complex percolation process is studied. This process conforms with general principles of causality and covariance. We end with some detailed quantum measure calculations for a specific percolation constant.

This document is currently not available here.



Share

COinS