Statistical Modeling to Characterize Relationships Between Knee Anatomy and Kinematics
Publication Date
6-23-2018
Document Type
Article
Organizational Units
Daniel Felix Ritchie School of Engineering and Computer Science, Center for Orthopaedic Biomechanics, Mechanical and Materials Engineering
Keywords
Statistical shape modeling, Knee anatomy, Kinematics, Joint mechanics, Principal component analysis
Abstract
The mechanics of the knee are complex and dependent on the shape of the articular surfaces and their relative alignment. Insight into how anatomy relates to kinematics can establish biomechanical norms, support the diagnosis and treatment of various pathologies (e.g., patellar maltracking) and inform implant design. Prior studies have used correlations to identify anatomical measures related to specific motions. The objective of this study was to describe relationships between knee anatomy and tibiofemoral (TF) and patellofemoral (PF) kinematics using a statistical shape and function modeling approach. A principal component (PC) analysis was performed on a 20‐specimen dataset consisting of shape of the bone and cartilage for the femur, tibia and patella derived from imaging and six‐degree‐of‐freedom TF and PF kinematics from cadaveric testing during a simulated squat. The PC modes characterized links between anatomy and kinematics; the first mode captured scaling and shape changes in the condylar radii and their influence on TF anterior–posterior translation, internal‐external rotation, and the location of the femoral lowest point. Subsequent modes described relations in patella shape and alta/baja alignment impacting PF kinematics. The complex interactions described with the data‐driven statistical approach provide insight into knee mechanics that is useful clinically and in implant design.
Publication Statement
Copyright held by author or publisher. User is responsible for all copyright compliance.
Recommended Citation
Smoger, Lowell M, et al. “Statistical Modeling to Characterize Relationships between Knee Anatomy and Kinematics.” Journal of Orthopaedic Research, vol. 33, no. 11, 2015, pp. 1620–1630. doi: 10.1002/jor.22948.