Vertex Sliding Drives Intercalation by Radial Coupling of Adhesion and Actomyosin Networks During Drosophila Germband Extension
Publication Date
7-9-2018
Document Type
Article
Organizational Units
Biological Sciences, Physics and Astronomy
Keywords
Cell intercalation, Tricellular vertices, Oscillatory cycles, Asymmetric radial force
Abstract
Oriented cell intercalation is an essential developmental process that shapes tissue morphologies through the directional insertion of cells between their neighbors. Previous research has focused on properties of cell–cell interfaces, while the function of tricellular vertices has remained unaddressed. Here, we identify a highly novel mechanism in which vertices demonstrate independent sliding behaviors along cell peripheries to produce the topological deformations responsible for intercalation. Through systematic analysis, we find that the motion of vertices connected by contracting interfaces is not physically coupled, but instead possess strong radial coupling. E-cadherin and Myosin II exist in previously unstudied populations at cell vertices and undergo oscillatory cycles of accumulation and dispersion that are coordinated with changes in cell area. Additionally, peak enrichment of vertex E-cadherin/Myosin II coincides with interface length stabilization. Our results suggest a model in which asymmetric radial force balance directs the progressive, ratcheted motion of individual vertices to drive intercalation.
Publication Statement
Copyright held by author or publisher. User is responsible for all copyright compliance.
Recommended Citation
Vanderleest, Timothy E, et al. “Vertex Sliding Drives Intercalation by Radial Coupling of Adhesion and Actomyosin Networks during Drosophila Germband Extension.” ELife, vol. 7, 2018, pp. eLife, 2018–07-09, Vol.7. doi: 10.7554/elife.34586.