Date of Award
6-1-2010
Document Type
Dissertation
Degree Name
Ph.D.
Organizational Unit
College of Natual Science and Mathematics
First Advisor
Sharolyn Anderson, Ph.D.
Second Advisor
Joseph K. Berry
Third Advisor
Paul C. Sutton
Fourth Advisor
Rebecca L. Powell
Fifth Advisor
Scott T. Leutenegger
Keywords
Aircraft combat survivability, Flight route planning, Geographic information systems, Helicopter, Spatial behavior, Susceptibility
Abstract
Movement and transportation systems are a primary topic in the study of humans and their relationship with the environment. Only a few modes of transportation allow for nearly full freedom of movement that is unconstrained by rigid nodes and networks. Individual human travel (walking, climbing, swimming, etc.) is one example while rotorcraft travel is another. Although other criteria constrain movement, independence from a network allows for a unique examination of human spatial decision-making and choice behavior. This research analyzes helicopter flight route planning in a low threat combat environment with respect to geography. The particular problem addressed, which ultimately concerns the quantitative representation and mapping of helicopter susceptibility in a low threat, combat environment, is assisted by a Geographic Information System (GIS). Prior susceptibility research on helicopters is combined with the spatial analytical functions of a GIS to cartographically model three dimensional flight corridors and routes across four separate areas. GIS optimized flight routing plans that minimize helicopter susceptibility (maximize capability to avoid threats) are then compared to the conventional routes produced by human flight route planners using existing techniques. Findings indicate that although the GIS routes reduce susceptibility costs, they concomitantly decrease route diversity. There was no significant evidence that experience, expertise, landscape familiarity, age, or the amount of time taken to plan had any effect on the spatial character of the routes. Several spatial similarities between conventionally planned routes and GIS optimized routes were revealed that expose potential perceptual limitations imposed by the conventional flight planning paradigm. Implementation of geospatial technology could help eliminate these restrictions.
Publication Statement
Copyright is held by the author. User is responsible for all copyright compliance.
Rights Holder
Brett J. Machovina
Provenance
Received from ProQuest
File Format
application/pdf
Language
en
File Size
217 p.
Recommended Citation
Machovina, Brett J., "Susceptibility Modeling and Mission Flight Route Optimization in a Low Threat, Combat Environment" (2010). Electronic Theses and Dissertations. 389.
https://digitalcommons.du.edu/etd/389
Copyright date
2010
Discipline
Geography, Geographic information science and geodesy, Operations research